Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1835
Create:
Last Update:

🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph

BY Machine learning Interview






Share with your friend now:
tg-me.com/machinelearning_interview/1835

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Machine learning Interview from de


Telegram Machine learning Interview
FROM USA